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9.2 Minimum Time to Climb

Example 5.3. The original minimum time to climb problem

was presented by Bry-

son et al. [34] and has been the subject of many analyses since then. Although the

Problem is not nearly as difficult to solve as the shu
here because it illustrates the treatment of tabular
the optimal control function a(t) (the angle of att

ttle reentry examples, it is included
data. The basic problem is to choose
ack) such that an airplane flies from

4 point on a runway to a specified final altitude as quickly as possible. In its simplest

form, the planar motion of the aircrafl is described by the following set of ODEs:

h = wsin g
) I 17 2
B [T(AL. k) cos(a) ~ D] - B sin~,
e 3 [T(AL k) sinfa) + L] + cosy [_f_'_m__ = %—iﬁw;] :
: me : (Re+h)  ofR.+ )2
UL )
w = S f:p“ﬁ =

(5.11)

(5.12)
(5.13)

(5.14)

where 7 is the altitude (ft), v the velocity (fi/sec), v the flight path angle (m:d), w the
weight (Ib), m = w/gy the mass, i the gravitational constant. and R, the radius of the

earth. Furthermore. the simple bounds

0 < A < 69000. (ft), 1 <o < 2000. (ft).
—89 (deg) < ¥ < 89 (deg), 0 < w < 45000 (Ih).

~20 (deg) < a < 20 (deg)

are also imposed.

The aerodynamic forces on the vehicle are defined by the expressions

1

i = ECDSP'UZ,
o= %CLS,OUQ,
CL == CLGS(M)QB

Cp = cpo(M)+n(M)cra(M)a?,

(5.15)

(5.16)

(5.17)
(5.18)

where D is the drag, L is the lift, Cr and Cp are the aerodynamic lift_ and drag (_:oef}Ill—
cients, respectively, with S the aerodynamic reference area of the ‘:fEthI'e, and p is t ?
atmospheric density. Although the results presented her'e use a cubic spline approxm_lah
tion to the 1962 Standard Atmosphere, qualitatively similar results can be s;ch1eved wit ‘
a simple exponential approximation to p(h) (cf. Example 5.1). The following constants

complete the definition of the problem:

0) "= 0. (ft), h(tp) = 656000 (ft),
g(((])) = 421&.2)60 (ft/sec), v(tp) = 968.148 (ft/sec),
¥(0) = 0. (rad), ey = B (ra.d)ﬁ
w(0) = 42000.0 (Ib). S = 530, (ft2).



Thrust T(M, k) (thousands of 1b)

Altitude h (thousands of {t)
M 0 5 10 15 20 25 30 40 50 70
6.0 242
0.2 | 2800 246 21.1 181 152 128 10.7
0.4 283 252 21.9. 187 159 134 112 3 4.4
06 | 30:8 22 238 208 3 445 123 8.1 4.9
0.8 | 345 30.3 266 232 19.8 168 14.1 9.4 5.6 L
1.0 | 379 343 304 26.8 233 198 168 11.2 6.8 1.4
1.2 {361 380 349 31.3 273 236 204 134 8.3 1.7
1.4 366 385 3861 316 281 242 162 100 2.2

1.6 38.¥ 367 320 281k 183 11.9 2.9
1.8 346 31 217 133 3.1

Table 5.2: Propulsion data.

M |0 0.4 0.8 0.9 1.0 1.2 1.4 1.6 1.8
CLa | 3.44 3.44 3.44 3.58 4.44 3.44 30% 2.86 2.44
cpo | 0.013 0.013 0.013 0.014 0.031 0.041 0.039 0.036 0.035

7 | 0.54 0.54 0.54 0.75 0.79 0.78 0.89 0.93 0.93

Table 5.3: Aerodynamic data.
5.2.4 Numerical Solution

Using the minimum curvature approximations for the tabular data, the minimum time
to cimb problem can be solved using the direct transcription algorithm in SOCS. Table
5.4 summarizes the progress of the algorithm for this application using a linear initial
guess for the dynamic variables. The first grid used a trapezoidal discretization (TR)
with 10 grid points. The NLP problem was solved using 25 gradient evaluations (GE),
16 Hessian evaluations (HE), and a total of 523 function evaluations (FE) including the
finite difference perturbations. The right-hand sides of the ODEs were evaluated 5230
times (NRHS) leading to a solution with a discretization error of €, = 0.35. Because
the error was not sufficiently equidistributed, a second iteration using the trapezoidal dis-
cretization was performed. The HSS discretization (HS) was used for the third. fourth,
and fifth refinement iterations, after which the HSC method (HC) was used for the
remaining refinements. Figure 5.11 illustrates the progress of the mesh-refinement algo-
rithm with the first refinement iteration shaded darkest and the last refinement shaded
lightest. For this case, 9 mesh-refinement. iterations were required.

" Tter. | Disc. | M | GE | HE | FE | NRHS E frees CPU (seq)
1] TR 10| 25| 16| 523 | 5230 | 0.35x10° 2.8
2| TR| 19| B | 4| 159 | 3021 | 0.68x 107! L7
3 HS | 19 & 5| 174 | 6438 | 0.8T x 10~ 34
A HS| 37| 5| 1| 74| 5402 051x10-3 3.7
5! HS| 50| 4 1 61 7137 | 0.68 x 10~ 7.5
T 6| HC |17 | 4| 1| 154 | 3n8R2 | 0.12 x 104 11
7| HC 179 | 4| 1| 154 | 54978 | 0.13 x 10~F T
8 HC | 275 4 i 154 | %4546 { 0.14 x 167¢ 27
9| HC | 285 3 1| 129 | 73401 | 097 x 107 22,
Total = 1 65 | 31 | 1682 | 276035 E 9488

Table 5.4: Minimum time to climb example.
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Figure 5.11: Minimum time to climb—mesh refinement.

Figure 5.12 shows the solution with altitude in multiples of 10000 ft, velocity in
multiples of 100 ft/sec, and weight in multiples of 10000 1b. The optimal (minimum)
time for this trajectory is 324.9750302 (sec). The altitude time history demonstrates
one of the more amazing features of the optimal solution, namely the appearance of a
dive midway through the minimum time to climb trajectory. When first presented in
1969, this unexpected behavior sparked considerable interest and led to the so-calle
energy-state approach to trajectory analysis. In particular, along the final portion of
the trajectory, the energy is nearly constant, as illustrated in the plot of altitude versus
velocity.
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Figure 5.12: Minimum time to climb solution.

[34] A. E. BrySON, Jr., M. N. DEsal, aND W. C. HOFFMAN, Energy-State Approz-

mmation in Performance Optimization of Supersonic Aircraft, Journal of Aircraft.
6 (1969), pp. 481-488. |



	1
	2
	6
	7
	8

